library(dplyr)
<- function(n, b, u_coef) {
func_lm_sim <- vector()
u 1] <- rnorm(1)
u[for (i in 2:n) {
<- u_coef * u[i - 1] + rnorm(1, sd = 0.1) # 誤差項に系列相関あり
u[i]
}<- runif(n = n)
x <- b * x + u
y <- lm(y ~ x - 1) %>%
b_hat summary() %>%
{$coef[1]
.
}return(b_hat)
}<- 0.7
b <- 0.7
u_coef <- 500 rep
Rで確率・統計:一致推定量
Rでデータサイエンス
一致推定量
単回帰モデルを\[Y_i=\alpha+\beta X_i+u_i,\quad i=1,2,\cdots,n\]として、以下の仮定を置く。
- \(\mathrm{E}(u_i)=0\)
- \(\mathrm{V}(u_i)=\mathrm{E}(u_i^2)=\sigma_i^2\quad\cdots\)不均一分散
- \(i\neq j\)の場合、\(\mathrm{Cov}(u_i,u_j)=\mathrm{E}(u_iu_j)=0\quad\cdots\)系列相関なし
最小二乗推定量は\[\hat{\beta}=\displaystyle\sum_{i=1}^n\dfrac{X_i-\bar{X}}{\displaystyle\sum_{j=1}^n\left(X_j-\bar{X}\right)^2}\cdot Y_i\]
ここで\[\omega_i=\dfrac{X_i-\bar{X}}{\displaystyle\sum_{j=1}^n\left(X_j-\bar{X}\right)^2}\]とすると、\[\hat{\beta}=\displaystyle\sum_{i=1}^n\omega_i\,Y_i=\beta+\displaystyle\sum_{i=1}^n\omega_i\,u_i\]
\(X_i\)は非確率変数であるため、推定量の期待値は\[\mathrm{E}\left(\hat{\beta}\right)=\mathrm{E}\left(\beta+\displaystyle\sum_{i=1}^n\omega_i\,u_i\right)=\mathrm{E}(\beta)+\mathrm{E}\left(\displaystyle\sum_{i=1}^n\omega_i\,u_i\right)=\beta+\displaystyle\sum_{i=1}^n\omega_i\,\mathrm{E}(u_i)=\beta+\displaystyle\sum_{i=1}^n\omega_i\cdot0=\beta\]
つまり誤差項\(u_1,u_2,\cdots,u_n\)が分散不均一であっても、\(\hat{\beta}\)は不偏推定量となる。
なお、\(\beta\)の推定量は\[\begin{aligned} \hat{\beta} &=\dfrac{S_{xy}}{S_{xx}} =\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)\left(Y_i-\bar{Y}\right)}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2} =\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)\left(\beta\left(X_i-\bar{X}\right)+(u_i-\bar{u})\right)}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2} \\&=\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)\left(\beta\left(X_i-\bar{X}\right)\right)}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}+\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)\left(u_i-\bar{u}\right)}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2} \\&=\beta+\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)\left(u_i-\bar{u}\right)}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2} =\beta+\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)u_i-\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)\bar{u}}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2} \\&=\beta+\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)u_i-\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)\displaystyle\sum_{i=1}^n\bar{u}}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}=\beta+\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)u_i-\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)\cdot0}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2} =\beta+\dfrac{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)u_i}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}\\&=\beta+\displaystyle\sum_{i=1}^n\omega_iu_i\end{aligned}\]
但し\[\omega_i=\dfrac{\left(X_i-\bar{X}\right)}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}\]
\(X\)が非確率変数であることから\(\omega\)も非確率変数であり、前述の通り\(\mathrm{E}(u_i)=0,\,\mathrm{E}(u_i^2)=\sigma^2,\,\mathrm{Cov}(u_i,\,u_j)=\mathrm{E}(u_i\,u_j)=0\)を仮定しているので、推定量の分散は\[\begin{aligned} V(\hat{\beta})&=E\left(\hat{\beta}-E\left(\hat{\beta}\right)\right)^2=E\left(\hat{\beta}-\beta\right)^2 \\&=E\left(\displaystyle\sum_{i=1}^n\omega_iu_i\right)^2=E\left(\displaystyle\sum_{i=1}^n\omega_i^2\,u_i^2+\displaystyle\sum_{i\neq j}\omega_i\,\omega_j\,u_i\,u_j\right) \\&=\displaystyle\sum_{i=1}^n\omega_i^2E\left(u_i^2\right)+\displaystyle\sum_{i\neq j}\omega_i\,\omega_j\,E\left(u_i\,u_j\right)=\displaystyle\sum_{i=1}^n\omega_i^2\sigma^2+\displaystyle\sum_{i\neq j}\omega_i\omega_j\cdot 0=\sigma^2\displaystyle\sum_{i=1}^n\omega_i^2 \\&=\sigma^2\displaystyle\sum_{i=1}^n\left(\dfrac{X_i-\bar{X}}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}\right)^2 =\sigma^2\dfrac{\left(X_1-\bar{X}\right)^2+\left(X_2-\bar{X}\right)^2\cdots\left(X_n-\bar{X}\right)^2}{\left(\left(X_1-\bar{X}\right)^2+\left(X_2-\bar{X}\right)^2\cdots\left(X_n-\bar{X}\right)^2\right)^2} \\&=\dfrac{\sigma^2}{\displaystyle\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}=\dfrac{\sigma^2}{n\cdot V(X)} \end{aligned}\]
よって\(n\rightarrow\infty\)のとき、\[V(\hat{\beta})\rightarrow0\]となるため、\(\hat{\beta}\)は\(\beta\)の一致推定量となる。
# シミュレーション 1
<- vector()
sim_bhat <- 30
n for (i in seq(rep)) {
<- func_lm_sim(n = n, b = b, u_coef = u_coef)
sim_bhat[i]
}hist(sim_bhat)
summary(sim_bhat)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01276 0.59666 0.70526 0.70998 0.83637 1.32648
# シミュレーション 2
<- vector()
sim_bhat <- 300
n for (i in seq(rep)) {
<- func_lm_sim(n = n, b = b, u_coef = u_coef)
sim_bhat[i]
}hist(sim_bhat)
summary(sim_bhat)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6113 0.6798 0.7013 0.7006 0.7220 0.8146
参考引用資料
- http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2018/basic_econome/02.pdf
- http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2016/basic_econome/07.pdf
- http://www3.u-toyama.ac.jp/kkarato/2017/econometrics/handout/Econometrics-2017-22-1215.pdf
- http://www2.toyo.ac.jp/~mihira/keizaitoukei2014/ols2.pdf
- http://www2.kobe-u.ac.jp/~kawabat/ch03j.pdf
最終更新
Sys.time()
[1] "2024-04-14 14:31:58 JST"
R、Quarto、Package
R.Version()$version.string
[1] "R version 4.3.3 (2024-02-29 ucrt)"
::quarto_version() quarto
[1] '1.4.542'
packageVersion(pkg = "tidyverse")
[1] '2.0.0'